Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Chemosphere ; 356: 141950, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599326

RESUMO

Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-ß-hydroxybutyrate and poly-ß-hydroxybutyrate-co-ß-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.

2.
Food Chem ; 449: 138834, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38599102

RESUMO

An HPLC-MS/MS multi-class method for quantitation of 15 different classes of veterinary drug residues (>140 analytes) in milk and poultry feed was developed and validated. Accuracy criteria for routine laboratories were met for the majority of analytes, > 83 % in milk and between 50 and 60 % in chicken feed, with an apparent recovery of 60-140 %. Extraction efficiency criteria were met for >95 % of the analytes for milk and > 80 % for chicken feed. Intermediate precision meets the SANTE criterion of RSD < 20 % for 80-90 % of the analytes in both matrices. For all analytes with an existing MRL in milk, the LOQ was below the related MRL. Twenty-nine samples of commercial milk and chicken feed were analyzed within the interlaboratory comparison. No residues of veterinary drugs were found in the milk samples. However, the feed samples exhibited high levels of nicarbazin, salinomycin, and decoquinate.

3.
Talanta ; 274: 125939, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547838

RESUMO

A new simple, fast and environmentally friendly deep eutectic solvent based dispersive liquid-liquid microextraction (DES-based DLLME) methodology assisted by vortex is presented for the separation and preconcentration of three elements (i.e., Fe, Cu and Pb) from edible oil samples (i.e., soybean, sunflower, rapeseed, sesame, and olive oil) prior to the determination by microwave-induced plasma optical emission spectrometry (MIP-OES). The deep eutectic solvent selected as extractant (i.e., choline chloride and ethylene glycol, 1:2) is synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC), and the extraction conditions are optimized by a two steps experimental design. Under the optimum extraction conditions (i.e., diluted sample weight: 8.6 g; DES volume: 100 µL; extraction time: 1 min; centrifugation time and speed: 3 min and 3000 rpm; and dispersion system: vortex) the analytical method presents excellent linearity (i.e., R2 values higher than 0.99) in the range 10-500 µg kg-1, repeatability (i.e., CV values lower than 9.2%), and limits of detection (LOD) values of 3, 2 and 0.7 µg kg-1 for Pb, Fe and Cu, respectively. None of the analytes displayed amounts over the upper limit permitted by law, and recovery values of all analytes evaluated in the different samples using external standard calibration were close to 100%, which excludes significant matrix effects. Finally, AGREEprep metric has been used to evaluate the method greenness (final score of 0.47) and it has been compared successfully with previous publications for the same type of analytes and matrices.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123955, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38306925

RESUMO

This comprehensive review paper aims to captivate the applicability of in-sorbent detection, where near-infrared spectroscopy (NIRS) converges with enrichment technologies. For this purpose, we collected and summarized information regarding the combination of several sophisticated analytical enrichment techniques with NIRS to further explore and develop this synergistic approach. Peer-reviewed publications, matching the criteria of in situ NIR measurements prior analyte elution, have been collected, investigated, and concluded within this review. Investigations according to used materials, commercial or self-made, composition, organic or inorganic and applied analytical methodologies have been carried out. Applications extending over a multitude of chemical fields, from environmental to medicinal applications. As this review concludes, the combination of these techniques further expands the applicability of NIRS and moreover tries to solve the long-standing issue of the comparably low sensitivity regarding this vibrational technique.

5.
Food Sci Nutr ; 12(2): 707-721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370091

RESUMO

Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.

6.
Foods ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397605

RESUMO

Flavonoid compounds have a variety of biological activities and play an essential role in preventing the occurrence of metabolic diseases. However, many structurally similar flavonoids are present in foods and are usually in low concentrations, which increases the difficulty of their isolation and identification. Therefore, developing and optimizing effective extraction and detection methods for extracting flavonoids from food is essential. In this review, we review the structure, classification, and chemical properties of flavonoids. The research progress on the extraction and detection of flavonoids in foods in recent years is comprehensively summarized, as is the application of mathematical models in optimizing experimental conditions. The results provide a theoretical basis and technical support for detecting and analyzing high-purity flavonoids in foods.

7.
Crit Rev Anal Chem ; : 1-25, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300174

RESUMO

Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.

8.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256957

RESUMO

The extraction of bioactive compounds of pharmaceutical interest from natural sources has been significantly explored in recent decades. However, the extraction techniques used were not very efficient in terms of time and energy consumption; additionally, the solvents used for the extraction were harmful for the environment. To improve the environmental impact of the extractions and at the same time increase the extraction yields, several new extraction techniques were developed. Among the most used ones are ultrasound-assisted extraction and microwave-assisted extraction. These extraction techniques increased the yield and selectivity of the extraction in a smaller amount of time with a decrease in energy consumption. Nevertheless, a high volume of organic solvents was still used for the extraction, causing a subsequent environmental problem. Neoteric solvents appeared as green alternatives to organic solvents. Among the neoteric solvents, deep eutectic solvents were evidenced to be one of the best alternatives to organic solvents due to their intrinsic characteristics. These solvents are considered green solvents because they are made up of natural compounds such as sugars, amino acids, and carboxylic acids having low toxicity and high degradability. In addition, they are simple to prepare, with an atomic economy of 100%, with attractive physicochemical properties. Furthermore, the huge number of compounds that can be used to synthesize these solvents make them very useful in the extraction of bioactive compounds since they can be tailored to be selective towards a specific component or class of components. The main aim of this paper is to give a comprehensive review which describes the main properties, characteristics, and production methods of deep eutectic solvents as well as its application to extract from natural sources bioactive compounds with pharmaceutical interest. Additionally, an overview of the more recent and sustainable extraction techniques is also given.

10.
Talanta ; 270: 125564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159350

RESUMO

Localization of lipidomes and tracking their spatial changes in tissues by mass spectrometry imaging (MSI) plays an important role in unveiling the mechanisms of living processes, diseases and therapeutic treatments. However, it is always challenging to achieve direct MSI of poorly-ionizable lipids, such as glycolipids and glycerolipids, due to the strong ion suppression and isobaric peaks interference from high-abundance phosphatidylcholines (PCs) in tissues. Here we developed a photocatalytic degradation-based ambient liquid extraction MSI method to largely enhance the detection coverage of poorly-ionizable lipids by rapid online removal of PCs in MSI. Phospholipids were found to be selectively photodegraded on TiO2 surface in acidic conditions in the presence of water under UV irradiation, while other poorly-ionizable lipids remained. Sulfate ion could largely improve the degradation efficiencies. Anatase nanoparticles-embedded TiO2 monolith was in-situ synthesized in the capillary of ambient liquid extraction system, and rapid online photodegradation of PCs was achieved during MSI with efficiency >80 %, largely reducing ion suppression. The pathway analysis showed that PC was oxidatively degraded starting from hydroxylation of C=C bonds. With intense UV irradiation, PCs were completely degraded into small molecules<200 Da without interference on the detection of endogenous lipids. With the new MSI method, detection coverage to cerebrosides, ceramides and diglycerides was enhanced by 2-9 times comparing with traditional MSI. Clearer localizations were observed for poorly-ionizable lipids via the new method than traditional method. Thus, this work provided a complementary MSI method for traditional MSI to address the issues on direct imaging of poorly ionizable lipids in ambient conditions.


Assuntos
Diagnóstico por Imagem , Lipidômica , Espectrometria de Massas/métodos , Glicolipídeos , Ceramidas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Food Chem X ; 19: 100850, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780275

RESUMO

The authenticity of honey currently poses challenges to food quality control, thus requiring continuous modernization and improvement of related analytical methodologies. This review provides a comprehensively overview of honey authenticity challenges and related analytical methods. Firstly, direct and indirect methods of honey adulteration were described in detail, commenting the existing challenges in current detection methods and market supervision approaches. As an important part, the integrated metabolomic workflow involving sample processing procedures, instrumental analysis techniques, and chemometric tools in honey authenticity studies were discussed, with a focus on their advantages, disadvantages, and scopes. Among them, various improved microscale extraction methods, combined with hyphenated instrumental analysis techniques and chemometric data processing tools, have broad application potential in honey authenticity research. The future of honey authenticity determination will involve the use of simplified and portable methods, which will enable on-site rapid detection and transfer detection technologies from the laboratory to the industry.

12.
Food Res Int ; 173(Pt 2): 113329, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803691

RESUMO

Tannins comprise a large group of polyphenols that can differ widely in chemical composition and molecular weight. The use of tannins dates back to antiquity, but it is only in recent years that their potential use as nutraceuticals associated with the human diet is beginning to be exploited. Although the biological effects of these phytocomplexes have been studied for many years, there are still several open questions regarding their chemistry and biotransformation. The vastness of the molecules that make up the class of tannins has made their characterisation, as well as their nomenclature and classification, a daunting task. This review has been written with the aim of bringing order to the chemistry of tannins by including aspects that are sometimes still overlooked or should be updated with new research in order to understand the potential of these phytocomplexes as active ingredients or technological components for nutraceutical products. Future trends in tannin research should address many questions that are still open, such as determining the exact biosynthetic pathways of all classes of tannins, the actual biological effects determined by the interaction of tannins with other molecules, their metabolization, and the best extraction methods, but with a view to market requirements.


Assuntos
Suplementos Nutricionais , Taninos , Humanos , Taninos/química , Polifenóis/farmacologia , Dieta
13.
Prev Nutr Food Sci ; 28(3): 209-223, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37842256

RESUMO

Proteins play a vital role in human development, growth, and overall health. Traditionally, animal-derived proteins were considered the primary source of dietary protein. However, in recent years, there has been a remarkable shift in dietary consumption patterns, with a growing preference for plant-based protein sources. This shift has resulted in a significant increase in the production of plant proteins in the food sector. Consequently, there has been a surge in research exploring various plant sources, particularly wild, and underutilized legumes such as Canavalia, Psophocarpus, Cajanus, Lablab, Phaseolus, and Vigna, due to their exceptional nutraceutical value. This review presents the latest insights into innovative approaches used to extract proteins from underutilized legumes. Furthermore, it highlights the purification of protein hydrolysate using Fast Protein Liquid Chromatography. This review also covers the characterization of purified peptides, including their molecular weight, amino acid composition, and the creation of three-dimensional models based on amino acid sequences. The potential of underutilized legume protein hydrolysates as functional ingredients in the food industry is a key focus of this review. By incorporating these protein sources into food production, we can foster sustainable and healthy practices while minimizing environmental impact. The investigation of underutilized legumes offers exciting possibilities for future research and development in this area, further enhancing the utilization of plant-based protein sources.

14.
Food Sci Nutr ; 11(10): 5799-5817, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823094

RESUMO

Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.

15.
Environ Res ; 236(Pt 2): 116858, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562740

RESUMO

Micro (nano)plastics (MNPs) are pollutants of worldwide concern for their ubiquitous environmental presence and associated impacts. The higher consumption of MNPs contaminated commercial food can cause potential adverse human health effects. This review highlights the evidence of MNPs in commercial food items and summarizes different sampling, extraction, and digestion techniques for the isolation of MNPs, such as oxidizing digestion, enzymatic digestion, alkaline digestion and acidic digestion. Various methods for the characterization and quantification of microplastics (MPs) are also compared, including µ-Raman spectroscopy, µ-Fourier transform infrared spectroscopy (FTIR), thermal analysis and Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, we share our concerns about the risks of MNPs to human health through the consumption of commercial seafood. The knowledge of the potential human health impacts at a subcellular or molecular level of consuming mariculture products contaminated with MNPs is still limited. Moreover, MNPs are somewhat limited, hard to measure, and still contentious. Due to the nutritional significance of fish consumption, the risk of exposure to MNPs and the associated health effects are of the utmost importance.

16.
Meat Sci ; 204: 109278, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37442015

RESUMO

Meat and its by-products offer a rich source of bioactive compounds which have potential applications in both the food and pharmaceutical industries. In this review, we present several extraction methods and report the identification and properties of bioactive peptides. We also examine the challenges and limitations associated with their use in food applications. Enzymatic hydrolysis and fermentation using starts cultures are common methods for generating bioactive peptides from meat proteins. Additionally, natural gastrointestinal digestion can also produce bioactive peptides. However, emerging technologies like high hydrostatic pressure, subcritical extraction and pulsed electric fields can improve hydrolysis and increase the yield of bioactive peptides. Online bioinformatics applications have emerged as an established method for identifying potentially bioactive peptides. These tools reduce the cost and time required for traditional methods of research. Finally, incorporating bioactive peptides into diets for specific purposes such as supporting vulnerable populations like children and the elderly ensures safety and efficacy.


Assuntos
Carne , Peptídeos , Criança , Humanos , Idoso , Peptídeos/química , Carne/análise , Hidrólise , Proteínas de Carne
17.
Plants (Basel) ; 12(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37514347

RESUMO

Recently, increased attention has been paid to natural sources as raw materials for the development of new added-value products. Flavonoids are a large family of polyphenols which include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory, antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Current trends of research and development on flavonoids relate to identification, extraction, isolation, physico-chemical characterization, and their applications to health benefits. This review presents an up-to-date survey of the most recent developments in the natural flavonoid classes, the biological activity of representative flavonoids, current extraction techniques, and perspectives.

18.
Environ Sci Pollut Res Int ; 30(39): 90595-90614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37488386

RESUMO

In many nations and locations, groundwater serves as the population's primary drinking water supply. However, pharmaceuticals found in groundwater and surface waters may affect aquatic ecosystems and public health. As a result, their existence in natural raw waters are now more widely acknowledged as a concern. This review summarises the evidence of research on pharmaceuticals' occurrence, impact and fate, considering results from different water bodies. Also, various analytical techniques were reviewed to compare different pharmaceuticals' detection frequencies in water bodies. These include liquid chromatography-mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and gas chromatography-mass spectrometry (GC-MS). However, owing to LC-MS's high sensitivity and specification, it is the most reported instrument used for analysis. The PRISMA reviewing methodology was adopted based on relevant literature in order to focus on aim of the review. Among other pharmaceuticals reviewed, sulfamethoxazole was found to be the most frequently detected drug in wastewater (up to 100% detection frequency). The most reported pharmaceutical group in this review is antibiotics, with sulfamethoxazole having the highest concentration among the analysed pharmaceuticals in groundwater and freshwater (up to 5600 ng/L). Despite extensive study and analysis on the occurrence and fate of pharmaceuticals in the environment, appropriate wastewater management and disposal of pharmaceuticals in the water environment are not still monitored regularly. Therefore, there is a need for mainstream studies tailored to the surveillance of pharmaceuticals in water bodies to limit environmental risks to human and aquatic habitats in both mid and low-income nations.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Cromatografia Líquida , Águas Residuárias , Água/análise , Espectrometria de Massas em Tandem , Ecossistema , Água Subterrânea/química , Sulfametoxazol/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
19.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272499

RESUMO

Olive family (Oleaceae) contains several species among which Olea europaea L. is mostly used for production of olive oils. Various parts of olive tree are rich source of diverse bioactive compounds such as Apigenin, elenolic acid, Hydroxytyrosol, Ligstroside, Oleoside, Oleuropein, Oleuropein aglycone, Tyrosol, etc. Among these, oleuropein, a secoiridoid is predominantly found in olive leaves and young olive fruits of different species of Oleaceae family. Scientists have adopted numerous extraction methods (conventional & latest) to increase the yield of oleuropein. Among these techniques, maceration, soxhlet, microwave-assisted, ultrasonication, and supercritical fluid methods are most commonly employed for extraction of oleuropein. Evidently, this review emphasizes on various in-vitro and in-vivo studies focusing on nutraceutical properties of oleuropein. Available literature highlights the pharmaceutical potential of oleuropein against various diseases such as obesity, diabetes, cardiovascular complications, neurodegenerative diseases, cancer, inflammation, microbial infections, and oxidation. This review will benefit the scientific community as it narrates comprehensive literature regarding absorption, metabolism, bioavailability, extraction techniques, and nutraceutical perspectives associated with oleuropein.

20.
BMC Surg ; 23(1): 122, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170142

RESUMO

INTRODUCTION: This study aimed to compare the short-term and survival outcomes in laparoscopic low rectal cancer surgery with three different specimen extraction techniques, and whether it affects loop ileostomy closure. MATERIALS AND METHODS: A consecutive series of patients with low rectal cancer who underwent laparoscopic low anterior resection plus protective loop ileostomy (LAR-PLI) were enrolled. Three main techniques, namely specimen extraction through auxiliary incision (EXAI), specimen extraction through stoma incision (EXSI), and specimen eversion and extra-abdominal resection (EVER), were employed. The postoperative short-term and survival outcomes of the three techniques and the impact on loop ileostomy closure were compared. RESULTS: In all, 254 patients were enrolled in this study: 104 (40.9%) in the EXAI group, 104 (40.9%) in the EXSI group, and 46 (18.1%) in the EVER group. For primary surgery, EXAI group had significantly longer operative time (P < 0.001), more intraoperative bleeding (P < 0.001), longer length of abdominal incision (P<0.001), longer time to first flatus (P < 0.001), longer time to first defecation (P < 0.001), longer time to first eat (P < 0.001), and longer postoperative hospital stays (P = 0.005) than the EXSI and EVER groups. The primary postoperative complication rate in the EXAI and EVER group was significantly higher than in the EXSI group (P = 0.005). In loop ileostomy closure, EXAI group had significantly longer operative time (P = 0.001), more bleeding volume, and longer postoperative hospital stays (P < 0.001) than the EXSI and EVER groups. For survival outcomes, the 3-year local recurrence-free survival (LRFS) is 92.6% for all patients. The 3-year LRFS for patients in EXAI, EXSI, and EVER were 90.1%, 95.4%, and 92.7%, with P = 0.476. CONCLUSIONS: Our single-center results found that in LAR-PLI surgery for low rectal cancer, the short-term outcomes of specimen extraction through the stoma incision or anus were better than that through the auxiliary incision, but the 3-year LRFS was no statistically different.


Assuntos
Laparoscopia , Neoplasias Retais , Estomas Cirúrgicos , Humanos , Ileostomia/métodos , Neoplasias Retais/complicações , Complicações Pós-Operatórias/etiologia , Laparoscopia/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...